

Note

A new biflavanoid from *Cycas beddomei*[†]

Biswanath Das*, Gurram Mahender, Yerra Koteswara Rao
& Ponnaboina Thirupathi

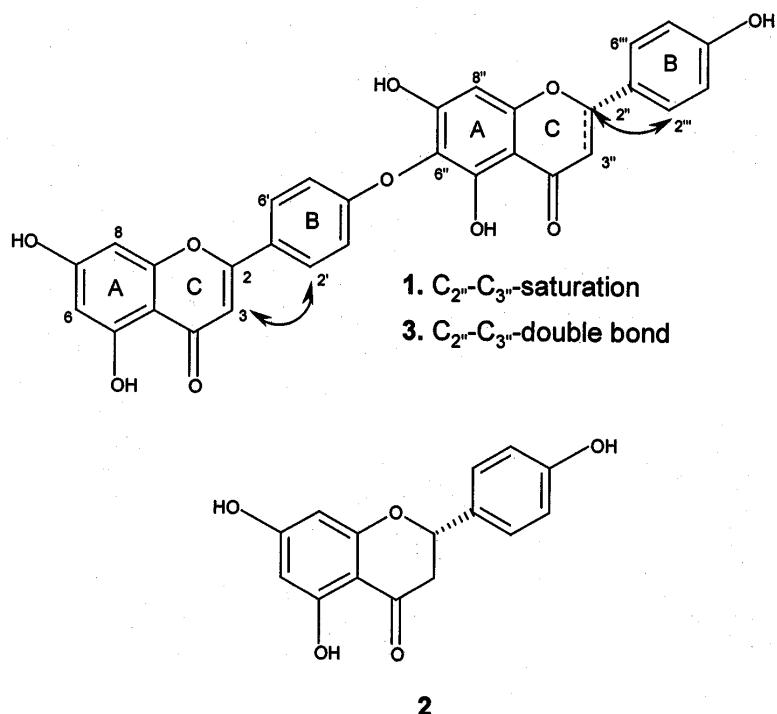
Organic Chemistry Division- I, Indian Institute of Chemical
Technology, Hyderabad 500 007, India

E-mail: biswanathdas@yahoo.com

Received 5 May 2005; accepted (revised) 5 August 2005

Chemical investigation on the constituents of the cones of *Cycas beddomei* has been carried out which results in the isolation of a new biflavanoid, 2",3"-dihydrohinokiflavone, along with 2,3,2",3"-tetrahydrohinokiflavone, 2,3-dihydroamentoflavone, 2,3,2",3"-tetrahydroamentoflavone, 2,3-dihydro-4"-O-methylamentoflavone, and pinoresinol. The structure of the new compound has been established by detailed analysis of its spectral (mainly 1D and 2D NMR) data.

Keywords: *Cycas beddomei*, Cycadaceae, cones, biflavanoid, 2",3"-dihydrohinokiflavone


IPC Code: Int. Cl.⁸ A61K

Cycads are woody-stemmed plants with leaves resembling those of ferns and palms. They are members of a class of plants known as *gymnosperms* which do not bear flowers but rather bear cones or "naked" seeds that develop on the individual cone scales. *Cycas* (Cycadaceae) is the major genus of cycads, and are rich source of biflavanoids such as amentoflavone and hinokiflavone derivatives¹⁻³. *Cycas beddomei* Dyer is a tall shrub endemic to Tirumala hills, Andhra Pradesh, India⁴. Earlier studies of this species have led to the isolation of different biflavanoids¹⁻³. The biological activities of some of the isolated biflavanoids are well investigated. For instance, amentoflavone and its derivatives possess inhibitory effects on lipid peroxidation⁵ and hinokiflavone inhibits the expression of the Epstein-Barr virus (EBV) genes⁶. They are also known to possess antituberculosis⁷, antifungal⁸, antibacterial⁹, antiviral¹⁰, anti HIV¹¹ and antimalarial activities¹². The present investigation on *C. beddomei* has afforded a new biflavanoid, 2",3"-dihydrohinokiflavone **1** along with 2,3,2",3"-tetrahydrohinokiflavone¹, 2,3-dihydro amentoflavone¹³, 2,3,2",3"-

tetrahydroamentoflavone¹⁴, 2,3-dihydro-4"-O-methylamentoflavone³, and pinoresinol¹⁵. The structure elucidation of the new compound **1** (Figure 1) has been discussed in this note.

2",3"-Dihydrohinokiflavone **1** was obtained as yellow crystals. Its molecular formula was deduced to be C₃₀H₂₀O₁₀ from its elemental analysis and MS ([M⁺+1] at *m/z* 541 in LSIMS) and ¹³C NMR spectrum (indicating the presence of 30 carbons). The UV absorption maxima of **1** at 294 and 324 nm similar to (-)-naringenin **2** (ref. 17) are typical for a flavone derivative. The IR spectrum of **1** showed absorption bands at 3440, 1662, 1454, 1394, 1055 and 1014 cm⁻¹ and revealed the presence of chelated hydroxyl and carbonyl functionalities as well as aromatic moiety. The ¹H NMR spectrum of **1** showed two sets of AA'BB' pattern splittings (δ 7.98, d, *J* = 8.0 Hz and 7.00, d, *J* = 8.0 Hz; 7.44, d, *J* = 8.0 Hz and 6.94, d, *J* = 8.0 Hz) integrating for two protons each. The spectrum also indicated the presence of five hydroxyl groups (two chelated hydroxy protons at δ 13.10, 12.05 and three other phenolic hydroxyls at δ 10-8). In the aromatic region H-6 and H-8 showed the characteristic signals at δ 5.90 (d, *J* = 2.2 Hz) and two additional signals appeared at δ 6.71 (s) and 6.62 (s). A direct comparison of the ¹H NMR spectrum of **1** with that of hinokiflavone **3**, a known biflavanoid isolated from the same plant, clearly showed in **3** the disappearance of three aliphatic protons which appeared in **1** at δ 5.54, 3.21 and 2.90. All the other signals of two compounds (**1** and **3**) were almost similar, suggesting that the former is a mono dehydro derivative of the latter. 2,3-Dihydro hinokiflavone is a known compound¹⁷, however, the ¹H NMR spectrum of penta methylated 2,3-dihydrohinokiflavone showed the signals at the most downfield region at δ 7.78 (2H, d, *J* = 8.0 Hz) for H-2" and H-6" (ref.18). The downfield shift (δ 7.98, d, *J* = 8.0 Hz) of the two protons of **1** suggested that a double bond in this compound could be placed in the first moiety at ring C. It is reported¹⁹ that generally I or II-B ring protons will be shifted more downfield near unsaturation of C ring and I-B protons are more shifted (\sim δ 8.02, 2H, d, *J* = Hz, H-2',6') than II-B protons (\sim δ 7.74, 2H, d, *J* = Hz, H-2",6") when they are near to unsaturation of C ring. The NOESY experiment on **1** showed the

[†]Part 58 in the series, "Studies on Phytochemicals":
IICT Communication No. 060706

Fig. 1—Chemical structures of $2'',3''$ -dihydrohinokiflavone (**1**) and hinokiflavone (**2**)
 ←NOE Correlation

correlations of H-2'',6'' with H-2'' and H-2',6' with H-3 suggesting $2'',3''$ saturation in the compound.

The ^{13}C NMR spectrum of **1** presented signals for thirty carbons (vide Experimental). The spectrum showed peaks at δ 197.0 and δ 183.5 for flavone and flavanone moiety and at δ 79.7 and 43.5 for hydrogenated γ -pyrone. From the ^1H NMR spectrum the structure of the compound was settled as a binaringenin derivative with ether linkage. Appearance of ^{13}C NMR signal for oxygenated C''-6 at δ 126.5 also confirmed it to be a hinokiflavone¹⁹. In ^{13}C NMR spectrum C-1' of **1** appeared at δ 123.3 (-9.9 ppm compared to C-1' of 2,3,2'',3''-tetrahydrohinokiflavone) which again suggested¹ the presence of the double bond between C-2 and C-3 in compound **1**. Considering all these spectral data the structure of **1** was thus conformed as a new hinokiflavone derivative, $2'',3''$ -dihydrohinokiflavone.

The CD spectrum of **1** with absorption maxima at 325 and 292 nm was similar to that (-)-naringenin **2** having α -configuration of the 4-hydrophenyl ring²⁰. Thus, this spectrum clearly indicated the α -configuration for the C- 2'' substituent of **1**.

Experimental Section

Melting points were measured in Buchi-510 instrument and are uncorrected. Spectra were

recorded with the following instruments: UV, GBC Cintra 10e spectrophotometer; IR, Perkin-Elmer spectrophotometer; ^1H and ^{13}C NMR, Varian 300 MHz; LSIMS, Micromass Quattro LC. Optical rotation was determined with a JASCO DIP 360 digital polarimeter and CD spectrum with JASCO J-715 CD spectrophotometer. Column chromatography was performed over silica gel (BDH 100-200 mesh) and TLC with silica gel GF₂₅₄. The visualization of the spots in TLC plates was carried out either in UV light or exposing the plates to iodine vapors or spraying with 10% sulfuric acid in methanol and subsequently heating on hot plate.

Plant material

The cones of *Cycas beddomei* were collected from the forest of Tirumala Hills, Chittoor district, Andhra Pradesh in the month of February, 2003 and were botanically identified. A voucher specimen (No. IICT-15202) has been preserved in the herbarium of our institution.

Extraction of the plant material and separation of phytoconstituents

The shade dried and powdered cones (2 kg) were extracted with CHCl_3 -MeOH (1:1) (3 L) for 3 days at room temperature. The extract was concentrated and extracted with $\text{EtOAc-H}_2\text{O}$ (4:1) (3 \times 50 mL). On

concentration a gummy residue (42 g) was obtained. A part (0.5 g) of this gummy residue was preserved and the rest was subjected to column chromatography over silica gel (100-200 mesh). The column was eluted with solvents of increasing polarity using CHCl_3 and mixtures of CHCl_3 , acetone and MeOH . The eluents were collected in fractions of 500 mL each and concentrated. Following the TLC analysis, the eluents of similar profiles were combined to give fractions which were rechromatographed and eluted with mixtures of CHCl_3 and MeOH . The following compounds were obtained according to the increasing order of polarity: 2,3,2'',3''-tetrahydrohinokiflavone (25 mg), 2,3-dihydroamentoflavone (106 mg), 2,3,2'',3''-tetrahydroamentoflavone (26 mg), 2,3-dihydro-4'''-O-methylamentoflavone (23 mg), 2'',3''-dihydrohinokiflavone (**1**, 31 mg), and pinoresinol (13 mg). Compound **1** crystallized from MeOH .

2'',3'' Dihydrohinokiflavone 1: Yellow crystals; M.p. 300°C (d); $[\alpha]_D^{25} -0.15$ (*c* 0.06 in MeOH); UV (MeOH): λ_{max} 294, 324 nm ($\log \epsilon$ 4.10, 3.96); CD (MeOH): λ_{max} 292, 325 nm ($\Delta \epsilon$ +1.78, -8.86); IR (KBr): ν_{max} 3440, 1662, 1454, 1394, 1055, 1014 cm^{-1} ; ^1H NMR (300 MHz, d_6 -acetone): δ 13.10 (1H, s, 5''-OH), 12.05 (1H, s, 5-OH), 9.70 (1H, brs, 7-OH), 9.30 (1H, brs, 7''-OH), 8.90 (1H, brs, 4'''-OH), 7.98 (2H, d, J = 8.0 Hz, H-2', 6'), 7.44 (2H, d, J = 8.0 Hz, H-2'', 6'''), 7.00 (2H, d, J = 8.0 Hz, H-3', 5'), 6.94 (2H, d, J = 8.0 Hz, H-3'', 5'''), 6.71 (1H, s, H-3), 6.62 (1H, s, H-8''), 5.90 (2H, d, J = 2.2 Hz, H-6, 8), 5.54 (H, dd, J = 13.0, 2.8 Hz, H-2''), 3.21 (1H, dd, J = 17.0, 13.0 Hz, H-3'' β), 2.90 (1H, dd, J = 17.0, 2.8 Hz, H-3'' α); ^{13}C NMR (75 MHz, d_6 -acetone): δ 197.0 (C-4''), 183.5 (C-4), 167.4 (C-7), 165.6 (C-2), 165.3 (C-5), 164.2 (C-9), 162.1 (C-4'''), 159.1 (C-4'), 158.0 (C-7''), 155.2 (C-5''), 154.8 (C-9''), 133.5 (C-1'''), 129.4 (C-2'), 129.4 (C-6'), 128.7 (C-6'''), 128.7 (C-2'''), 126.5 (C-6''), 123.3 (C-1'), 116.9 (C-5'''), 116.9 (C-3'''), 116.0 (C-5'), 116.0 (C-3'), 105.9 (C-10), 103.8 (C-3), 103.2 (C-10''), 96.9 (C-6), 95.9 (C-8''), 95.4 (C-8), 79.7 (C-2''), 43.5 (C-3''); LSIMS: *m/z* 541

(M^++1); Anal. Calcd. for $\text{C}_{30}\text{H}_{20}\text{O}_{10}$: C, 66.67; H, 3.73%. Found: C, 66.61; H, 3.66%.

Acknowledgements

The authors thank CSIR, UGC—New Delhi for financial assistance.

References

- 1 Rani M S, Rao C V, Gunasekar D, Blond A & Bodo B, *Phytochemistry*, 47, **1998**, 319.
- 2 Jayaprakasam B, Damu A G, Gunasekar D, Blond A & Bodo B, *Phytochemistry*, 53, **2000**, 515.
- 3 Das B, Mahender G, Rao Y K, Prabhakar A & Jagadeesh B, *Chem Pharm Bull*, 53, **2005**, 135.
- 4 Hooker J D, 'Flora of British India', Periodical Excerpts, L. Reeve & Co., London, **1873**, p. 658.
- 5 Mora A, Paya M, Rois J L & Alcaraz M J, *Biochem Pharmacol*, 40, **1990**, 793.
- 6 Murakami A, Ohigashi H, Jisaka M, Hirota M, Irie R & Koshimizu K, *Cancer Lett*, 58, **1991**, 101.
- 7 Lin Y-M, Flavin M T, Cassidy C S, Mar A & Chen F-C, *Bioorg Med Chem Lett*, 11, **2001**, 2101.
- 8 Beranowska K -M, Cisowski W, Marian W & Beata M, *Planta Med*, 65, **1999**, 572.
- 9 Iunuma M, Tosa H, Tanaka T, Kanamru S, Asai F, Kobayashi Y, Miyauchi K -I & Shimano R, *Biol Pharm Bull*, 19, **1996**, 311.
- 10 Zembover D E, Lin Y -M, Flavin M T, Chen F -C & Korba B E, *Antiviral Res*, 39, **1998**, 81.
- 11 Lin Y -M, Anderson H, Flavin M T, Pai Y -H, Greenwood M -E, Penssuparp T, Pezzuto J M, Schizazi R F, Hughes S H & Chen F -C, *J Nat Prod*, 60, **1997**, 884.
- 12 Nunome S, Ishiyama A, Kobayashi M, Otoguro K, Kiyohara H, Yamada H & Omura S, *Planta Med*, 70, **2004**, 76.
- 13 Ohmoti T & Yosida O, *Chem Pharm Bull*, 31, **1983**, 919.
- 14 Ahmed I, Ishratullah K, Ilyas M, Rahman W, Seligmann O & Wags H, *Phytochemistry*, 20, **1981**, 1169.
- 15 Xih C J, Ravikumar OR, Huang F C, Buchner C & Whitlock H, *J Am Chem Soc*, 98, **1976**, 5412.
- 16 Mabry T J, Markham K R, Thomas M B, *The Systematic Identification of Flavonoids*, (Springer, New York), **1970**, pp 170.
- 17 Varshnay A K, Mah T, Khan N V, Rahman W, Hwa C W, Okisawa M & Kawano N, *Indian J Chem*, 11, **1973**, 1209.
- 18 Silva G L, Chai H, Gupta M P, Farnsworth N R, Cordell G A, Pezzuto J M, Beecher C W W & Kinghorn A D, *Phytochemistry*, 40, **1995**, 129.
- 19 Markham K R, Sheppard C & Geiger H, *Phytochemistry*, 20, **1981**, 1169.
- 20 Giorgio E, Parrinello N, Caccamese S & Rosinia C, *Org Biomol Chem*, 2, **2004**, 3602.